Speaker adaptation based on sparse and low-rank eigenphone matrix estimation
نویسندگان
چکیده
The eigenphone based speaker adaptation outperforms the conventional MLLR and eigenvoice methods when the adaptation data is sufficient, but it suffers from severe over-fitting when the adaptation data is limited. In this paper, l1 and nuclear norm regularization are applied simultaneously to obtain a more robust eigenphone estimation, resulting in a sparse and low-rank eigenphone matrix. The sparse constraint can reduce the number of free parameters while the low rank constraint can limit the dimension of phone variation subspace, which are both benefit to the generalization ability. Experimental results show that the proposed method can improve the adaptation performance substantially, especially when the amount of adaptation data is limited.
منابع مشابه
Speaker adaptation based on regularized speaker-dependent eigenphone matrix estimation
Eigenphone-based speaker adaptation outperforms conventional maximum likelihood linear regression (MLLR) and eigenvoice methods when there is sufficient adaptation data. However, it suffers from severe over-fitting when only a few seconds of adaptation data are provided. In this paper, various regularization methods are investigated to obtain a more robust speaker-dependent eigenphone matrix es...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملConstrained maximum likelihood linear regression for speaker adaptation
This paper proposes a new structure for use in MLLR adaptation aiming at constraining the transform for potentially better parameter estimation from sparse adaptation data. Motivations for the use of the new structure, and EM based parameter estimation are presented. Experimental results on Spoke3 of the Wall Street Journal task revealed that the proposed transformations outperform a full matri...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014